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Abstract—Human identification is of great importance for
personalized and ubiquitous computing services. As the rapid
and ubiquitous deployment of wireless access, the data of channel
state information (CSI) gathered from wireless networks has
become a useful way for recognizing human activities. In this
paper, we investigate the problem of human identification based
on biometrics using the wireless big data of CSI. The rationale
is that human’s behavioral movements cause unique impacts on
wireless CSI, which can be used to recognize the corresponding
biometrics and further identify different persons in a non-
intrusive manner. We first propose BioID, a general frame
for biometric identification based on wireless big data of CSI.
Based on the framework, we further devise a novel scheme for
identification with lip motions using CSI. By considering the
CSI characteristics of lip motions, we employ various signal
processing and classification techniques. The experimental results
show that the proposed scheme can achieve accurate human
identification (accuracy >90%). Finally, we discuss several open
issues and challenges for future direction.

Index Terms—Channel state information, behavior recognition,
biometrics, identification,

I. INTRODUCTION

Human identification is critical for personalized computing
and services. The traditional human identification strategies
such as password, personal identification numbers (PIN) and
on-screen gestures are prone to security risks since they can
be easily copied, shared or peeped. Biometrics, as a method
for human identification, have been extensively studied in
recent years and have replaced the traditional identification
strategies in various fields due to their distinctive nature
[1]. For example, fingerprint has been widely applied in the
building access, smartphone authentication, residence permits,
criminal records, etc. There are plenty of different biometrics,
which are typically clustered into two categories: Physiological
and Behavioral, as shown in Figure 1. Physiological biometrics
include faces, fingerprint, ears, palm veins, thermograms,
body odor, DNA, etc. Behavioral biometrics include signature,
voice, keystrokes, walking poses, eye motions, lip motions,
etc. To exploit the above biometrics for human identification,
various devices are designed and deployed such as fingerprint
scanner, facial recognition cameras and palm print systems.
These devices are often placed in front of the door access and
require the users to proactively measure their biometrics for
identification. The devices however are often expensive and
require considerable deployment overhead.

Recent advances in wireless communications shed light on
the design of wireless non-intrusive biometric identification
[2]–[4]. Specifically, the channel state information (CSI)

is promising to “infer” the biometrics with the channel
states variations interfered by people’s behavioral movements.
Modern Wi-Fi standards like IEEE 802.11n/ac convey massive
CSI data since they employ Multiple-Input Multiple-Output
(MIMO) and Orthogonal Frequency Division Multiplexing
(OFDM) to improve the link capacity of the wireless com-
munication. In such systems, there are multiple subcarriers to
transmit the wireless signal at the same time. CSI measures
the channel frequency response (CFR) in the subcarriers. The
received signal is a result of the constructive and destructive
interference of several multi-path signals scattered from the
walls, pedestrians and other surrounding objects. Therefore,
the subtle physical movement can be easily reflected by the
CSI. Recently, CSI has been identified as a key enabling
characteristic for the human-machine interaction and has
now been measurable on the commercial-off-the-shelf (COTS)
WLAN infrastructures such as the Intel 5300 NIC [5] and
Atheros series [6].

From the nature of CSI, it can be inferred that the behav-
ioral biometrics are more detectable than the physiological
biometrics. The reason is that the behavioral motions can
affect the wireless signals with certain unique patterns, which
can be possibly captured via CSI and recognized at the
receiver side. For example, Li et al. [7] used CSI traces
to extract the distinct gestures which could be used for
human identification. Xin et al. [8] extracted the walking
patterns of individuals from CSI measurement, which can
further distinguish different people. The challenges for the
exploitation of CSI for biometric identification include: 1)
Extraction of the signal reflections from the target motions.
The behavioral biometrics are detected by the signal variations.
However, the movements of the surrounding objects and
people can also affect the signal reflections. As a result, it
is very challenging to clean the noise data and extract the
signal reflections caused only by the motions of the target
behavioral biometrics. 2) Recognition of the tiny differences
among the biometrics of different people. Considering that
the typical features like gaits, talking rates may be similar for
different people, it is challenging to further extract the distinct
biometric patterns for different individuals. To address this
problem, appropriate features regarding the biometric nature
need to be identified and extracted. 3) There may be multiple
data sources that can be used at the same time, the aggregation
of these different data and features is also challenging for
accurate biometric recognition.



In this paper, we discuss the wireless biometric identifica-
tion using the CSI data. We first introduce the fundamental
ideas of the biometrics and CSI-based applications. Then
we propose a general framework for wireless biometric
identification based on CSI big data, which covers the current
literature and is extensive to support recognition for more types
of biometrics. With the framework, we further devise a novel
scheme for wireless biometric identification of lip motions.
We carefully design the noise removal and feature extraction
modules in the lip motion based identification and implement
it on Intel 5300 NIC. The experiments with volunteers show
that the scheme can accurate identify different users using the
CSI data. The major contribution of this paper include:

1) We propose a general framework for biometric-based
human identification using wireless CSI big data. The
framework can be used to derive various identification
schemes with different biometrics.

2) Based on the framework, we propose a novel lip-motion
based identification approach. The CSI characteristics
associated with lip motions are effectively considered in
the noise removal and feature extraction.

3) We implement the lip-motion based identification. The
experimental results show that the proposed work can
accurate identify different people based on the CSI data.

The rest of the paper is organized as follows. Section
II introduces the basic concepts of biometrics and the
applications of CSI. Section III presents the general framework
for biometric identification with wireless big data. Section
IV presents the detailed design of the lip motion based
identification, which is an instance of the framework. Section
V evaluates the proposed work. Section ?? discusses open
issues and challenges for future works. Section VI concludes
this work.

II. BIOMETRICS AND CHANNEL STATE INFORMATION

In this section, we present the preliminaries on biometrics
and CSI. The fundamentals of biometrics and CSI are
summarized. Then the related works on wireless biometrics
identification based on CSI are reviewed and discussed.

A. Biometrics

Biometrics are the distinct characteristics of individuals,
such as face, fingerprint, etc. Biometric IDs have been widely
used in building access, system authentication, national ID,
residence permits, personalized services, etc [1].

As shown in Figure 1, biometrics can be basically classified
into two categories: Physiological and behavioral. Typical
physiological biometrics include the faces, fingerprints, palm
veins, etc. Typical behavioral biometrics include keystrokes,
gaits, gestures, lip motions [9], [10], etc. The current literature
focuses on the use of physiological biometrics for identifica-
tion, which require various types of specialized devices such
as fingerprint scanners, face detection cameras, etc., which
are often expensive and require extra deployment overhead.
There are some new works aiming at exploiting the behavioral
biometrics using the cameras [11]. One limitation of the
camera-based works is that the target users should be in the
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Fig. 1. The category and applications of biometrics.

line-of-sight and with good light condition. Otherwise, the
graphs cannot be captured in good quality and the biometric
identification cannot be done.

B. Channel state information and its application

Modern Wi-Fi standards like IEEE 802.11n/ac employ
MIMO and OFDM to improve the link capacity of the
wireless communication [12]–[14]. Channel state information
(CSI) is a measure of the channel frequency response (CFR)
on the subcarriers [2]. With Ntx transmitter antennas, Nrx
receiver antennas and Ns OFDM subcarriers, there will be
Ntx ×Nrx ×Ns subcarriers for the signal transmission at the
same time. These subcarriers arrive at the receiver antennas
in different paths. The different paths lead to signal scatters
and fading in different levels. These signals are then merged
into the received signals. As a result, the different real-
world objects that are traversed by the subcarrier signals can
have significant impact on the received signals, which can be
reversely exploited to infer the positions, movements or shapes
of the objects.

CSI applications. CSI has been applied in several research
topics such as indoor localization, activity detection, etc [15].
Domenico et al. [16] exploited CSI for crowd counting in
indoor environment. The differential CSI features for crowd
counting are compared and selected. Gaebel et al. [17] adopted
CSI in authentication for augmented reality systems. Wang et
al. [18] utilized CSI for human activity recognition. Wang et
al. [19] used CSI to achieve the real time fall detection. The
basic idea for these works is that different moving patterns
of human bodies can have different impact on CSI features.



(a) CSI values without movements. (b) CSI values with periodic arm-
waving.

Fig. 2. Experiment on the CSI traces with periodic arm-waving.

The difference can be amplified large enough to be used for
recognition of different movements and activities. It has been
confirmed by several works that centimeter-level movement
can be detected by the CSI variations. Considering that some
biometrics are defined by the movement of certain body parts,
an intuition is that it can be used to identify the human
biometrics in a wireless manner. For example, one’s gait can be
detected by the CSI. Since different people may have different
walking rates, thigh swing amplitude and body shapes, the
person can be identified with the unique features conveyed in
the CSI trace.

It can also be inferred that only the biometrics that involve
motions can be directly captured by wireless CSI variations.
Physiological biometrics such as fingerprint, retina and palm
vein. cannot be directly captured by the wireless signals. In
the next subsection, we will introduce the recent attempts of
using CSI to establish wireless biometric IDs.

C. Wireless Biometric Identification with CSI

There are some recent works that focus on using CSI to
recognize certain behavioral biometrics.

1) Gaits: Gaits are a distinctive feature for individuals
[20]. Several recent works have been done to exploit CSI to
achieve the gaits identification. The basic idea is to extract
the unique influences on the CSIs by the gaits from different
people. Zhang et al. [4] used FFT-based continuous wavelet
transformation (CWT) method for extracting the signals in the
different frequency band. Then an efficient algorithm based
on the time and frequency domain is proposed for feature
selection. The work can identify one person out of a group of
2-6 persons with the accuracy up to 93%.

FreeSense [8] is the state-of-the-art work, in which principle
component analysis (PCA), discrete wavelet transform and
dynamic time warping techniques are combined to achieve CSI
waveform-based gait identification. The segmentation is subtly
designed to obtain the line-of-sight waveform from CSI time
series. Extensive experiments have been conducted to confirm
the performance of FreeSense. A quite high accuracy (88.9%-
94.5%) is achieved in identifying individuals out of a group
of 2-6 people.

2) Gestures: Gestures are another typical biometric that can
be used for human identification. Tan et al. [21] proposed
Wi-Finger, which takes advantages of the fine-grained CSI
available from commodity Wi-Fi devices and the prevalence

of Wi-Fi network infrastructures. An environmental noise
removal mechanism is proposed to migrate the impact of the
environmental noise. Besides, the intrinsic gesture behavior
is also detected which could be used to further distinguish
different individuals. Wi-Finger can work with non-line-of-
sight scenarios and Wi-Fi beacons.

Li et al. [7] exploited the CSI traces to recognize the
gestures for wireless input method. The proposed scheme is
based on the key intuition that the fingers of a user move
uniquely and a unique pattern in the time series of CSI
values is generated, based on which the gestures can be
identified. The system achieves high classification accuracy
for recognizing 9 digits finger-grained gestures from American
Sign Language. Gestures can be used for identification in
two ways. First, when performing the same gesture, different
people have distinct therbligs which can be used to identify
users. The other way is to associate people with different
gestures, which can directly indicate specific users once the
gesture is recognized.

III. A GENERAL FRAMEWORK FOR WIRELESS

BIOMETRICS BASED ON CSI

In this section, we present a general framework for wireless
biometrics identification based on CSI.

Before presentation of the framework, we first conduct an
experiment to confirm and illustrate the ability of CSI to
trace the movement of the real-world objects as follows. One
Wi-Fi Access Point (AP) and one laptop are used in this
experiment, where the laptop keeps pinging and receiving
feedback from the AP. The Wi-Fi AP runs IEEE 802.11n
and the laptop client is equipped with Intel 5300 NIC. One
volunteer stands in the room and waves his arm periodically.
No other people or objects are moving during the experiment.
Figure 2 shows the CSI traces before/after the arm-waving
activity from the volunteer. The traces are collected at the
laptop side in sampling rate of 1000 samples per second. We
can see that there are periodic rises in CSI value in Figure

Sensing & data 
pre-processing

Feature selection 
& extraction

Identification 
model training

Segmentation

Feature extraction

Feature selection

Classification 
algorithms

Matching & 
identification

CSI collection

Noise removal

Wavelet transform

Fig. 3. The general framework of CSI-based wireless biometric identification.



Fig. 4. The lip motions of the three volunteers. Each volunteers pronounce “yes, alright”. Each row shows the lip motions of one volunteer and the five
sub-figures are the captures for “ye”, “s”, “al”, “righ”, “t”, respectively.

2(b) other than in Figure 2(a). Clearly these rises are caused
by the periodic arm waving since it is the only difference
between the two experiments. Then it can be inferred that
the periodic CSI variations can be used as an indication
to identify the arm-waving activity. It is also worth noting
that recognizing the biometrics in real-world environments is
much more challenging than that in the above experimental
environment. The challenges and schemes will be discussed
in the following part of this article.

Figure 3 shows the proposed framework. One Wi-Fi AP
and a receiving client is required in the same area with the
target user(s). The system framework consists of sensing &
data preprocessing phase, feature extraction & selection phase
and identification phase. In the sensing and data preprocessing
phase, CSI traces are collected and the irrelevant data and
noise is filtered out. The wavelet packet decomposition is used
to transform the signals to time and frequency domain, which
can be further used to enhance the multi-scale data analysis.
In the feature extraction & selection phase, segmentation is
to divide the signals into segmentations corresponding to
the therbligs motions such as though swings for gaits and
lip lifting for speaking. Then different algorithms can be
used to extract the feature extraction and selection such as
principle component analysis. Finally in the identification
phase, certain training model designs are used to classify and
identify the biometrics of different people. The identification
results can then be further fed into the classifier to improve
the identification accuracy.

For each of the three components in the framework, different
algorithms and appropriate designs can be used for different
biometrics. The existing works that utilize gaits and gestures
can be included in the framework. Their difference is that the

features and algorithms are different. The main challenges in
choosing the algorithms and features for the three modules
in the framework include: 1) Noise removal. Due to the
large number of subcarriers, the movement of any objects
can impact the received CSI significantly. Therefore, it is a
non-trivial task to remove the noise data from the background
interference. The key to overcome this problem is to utilize
the unique time/frequency signal features to filter out the
irrelevant signals. 2) Feature extraction. Different biometrics
have different impact on the wireless signals. The impact on
signals may not be so clear and distinct to be obtained. To
overcome this challenge, it is important to combine appropriate
feature extraction schemes and the biology background to find
the CSI-level features.

IV. WIRELESS BIOMETRIC ID BASED ON LIP MOTIONS: A
CASE STUDY

In this section, we follow the proposed framework and
utilize the lip movements as the biometric ID for human
identification. Compared to gaits and gestures, lip motions
are more suitable for scenarios without much movement but
with more talks such as in meetingrooms or building access
authentication. We require different people speak the same
sentences, and then identify specific users based on their
difference in lip motions.

Different people have different talking behaviors, resulting
in different lip moving rates and amplitude [22]. Considering
the mouth shapes are inherently different for different people,
the difference in rates and amplitude is further amplified. We
conduct an experiment in which three volunteers pronounce
the same words “yes, alright”. Figure 4 shows the camera
pictures of the three volunteers’ lip motions. It can be seen



that volunteer 1’s amplitude is small during the pronunciation,
while volunteer 2 and volunteer 3’s lip amplitudes are larger.
Volunteer 3’s lower lip has a horizontal drift in pronouncing /s/
and /t/ compared to volunteer 2. The lip sizes and face shapes
are also different for all three volunteers. Besides, the lengths
of the pronunciation on the same syllables from different
people are also different, resulting in the different lip moving
frequency. These differences in amplitude and frequency
domain on lips are the basis for CSI-based identification.

Following the proposed framework, the bioID based on lip
motions works in three phases as follows.

A. Data pre-processing
To collect high-resolution CSI trace for lip motions, the

transmitter keeps transmitting packets to the receiver and the
CSI data is continuously stored at the receiver. Obviously not
all data are associated with the lip motions and the effective
data includes only the CSI data that captures the lip motions.
In the application level, we can first locate the lip positions to
reduce the irrelevant multipath effect with lip motions. This
can be done by requiring users to speak at certain positions or
similar to [23], which uses the MIMO beamforming technique
to locate and focus on the mouth. The target users are assumed
not moving during the speaking.

To further reduce the noise in signal processing level, we
have following tasks in the data pre-processing. First, we need
to localize the starting point of the user speaking such that the
features will be extracted in the same time domain. With a
wrong start point, the effective and distinctive signals may
be dismissed. As the CSI data does not demonstrate clear
amplification when lip motions start, we need to find a way to
identify the start point instead of setting a threshold. Second,
we need to remove 1) the background noise data (collected
before and after the sentence speaking) and 2) the CSI data
from the non-distinctive subcarriers. With the two steps, the
effective CSI data for lip motions can be obtained.

We first come to the second problem of noise removal.
Unlike gaits or gestures, there is no clear middle point for
the whole duration of lip motions since speaking different
words have no clear patterns as gaits. According to the
biology background, the rate of lip motions is between 2-
5 Hz [24]. The frequency of variations caused due to the
lip movements lie at the low end of the spectrum while the
noise frequency lies at the high end of the spectrum. As a
result, we choose the Butterworth low-pass filter to remove
the noise data without distorting the phase information in the
lip movement signal. We apply Butterworth low-pass filter to
all CSI series of all subcarriers for all antenna pairs. After
the filtering, the most part of the high-frequency noise can be
removed. We collect CSI data with a rate of 2000 samples
per second and set the cut-off frequency of Butterworth filter

at fc =
2π∗ f

s = 2π∗80
2000 = 0.25 rad/s, where f is the frequency

of variations in CSI time series for lip motions and s is the
sampling rate of CSI data. Figure 5 shows the result, where
Figure 5(a) is the original CSI wave and Figure 5(b) is the
CSI wave result from Butterworth filter. We can see that the
Butterworth filter can successfully remove most of the noise
from the CSI waves.
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Fig. 5. The CSI wave before and after butterworth filtering.

Next, similar to the work [25], we employ PCA to further
remove the CSI noise. It has been observed by several works
that the changes by human activity on different subcarriers
are correlated. Figure 6 shows the original CSI data for
different subcarriers. We can see that though the waves of these
subcarriers are quite different, there exists a strong correlation
among them (e.g., the data annotated in the dashed rectangles),
which is caused by the lip motions. Such correlation is quite
useful for extracting the CSI data associated with the lip
motions as part with the most common variations with other
subcarriers is the duration affected by the lip motions. To
extract the effective CSI, we use Principal component analysis
(PCA) to find the principle components in CSI trace that
represent the most common variations in all subcarriers, such
that the effective CSI data is obtained and the noise (with
uncorrelated variations) is filtered out. Besides, PCA reduces
the unnecessary dimensions and can reduce the complexity
in further steps. It is worth noting that the noise is hard to
removed by the low-pass filter because they are quite close to
the lip-sensitive CSI traces. We remove such noise with PCA
due to that they are not correlated, which means they must not
represent the lip motions.

With the above effective CSI data, we now solve the
first problem, i.e., localizing the starting point of the lip
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Fig. 6. The correlated variations on the CSI data of different subcarriers.

movements. For some users with large mouth amplitude for
speaking, the starting point of the speaking can be easily
obtained using a threshold τ . Figure 7 shows the filtered
CSI data (of one subcarrier) for the speaking activity of a
certain volunteer, whose mouth amplitude is relatively large.
We can see that there are several peaks associated with several
words speaking. Therefore, we can set a threshold to detect
the starting point. For users with small mouth amplitude, the
threshold may not work well since the micro movements are
not clear enough. To this end, we exploit a two-thresholds
based starting/ending point identification scheme, relying on
the assumption that each word speaking will demonstrate
a variation on the CSI changing rate. Instead of setting a
threshold for the rate changes, similar to [25], we check the
changes on the median absolute deviation (MAD) value. If the
difference between the MAD values (δMAD) for two adjacent
time windows exceeds a given threshold (Threshold 1), the
corresponding time windows are potential starting and ending
points.

For these potential starting and ending points, we calculate
the short time energy e. The energy is then compared to a
energy threshold (Threshold 2). If the energy exceeds the
threshold, a starting or an ending point is obtained. It is worth
noting that, the effective CSI data lying between the starting
point and corresponding ending point is quite different from
that between an ending point and its next adjacent starting
point as it is expected to be silence period. The two thresholds
are experimentally determined.

B. Feature extraction and selection
Now we have obtained the effective CSI data that can reflect

the lip movements. To differentiate the lip motions of the
same sentence from different people, we need to extract the
unique features representing the the lip motions. We first test
several popular features including median amplitude, standard
deviation, max amplitude, max amplitude, skewness, kurtosis,
dominant frequency, spectral entropy, spectral centroid, spec-
tral flatness, spectral rolloff, zero crossing and Interquartile
range. We collect the CSI data for five different volunteers
and calculate the above features. The results are shown in
Table I. We can see that most features are not effective
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Fig. 7. The filtered CSI data for a certain subcarrier.

TABLE I
THE DIFFERENT FEATURES FOR THE FIVE VOLUNTEERS.

Features User 1 User 2 User 3 User 4 User 5
median amplitude 0.2313 0.1973 0.3731 0.3846 0.0004

standard deviation 1.1742 1.0939 1.2927 1.4487 1.2314
max 2.9255 3.1468 3.0091 3.2842 3.759
min -2.0945 -2.6711 -3.2093 -2.6907 -2.344

skewness 0.0543 -0.2492 0.1269 -0.0294 0.9305
kurtosis 2.4444 2.8842 3.1724 2.2663 3.8411

dominant frequency 0.0039 0.0117 0.0078 0.0078 0.0039
spectral entropy 0.3515 0.333 0.2264 0.0204 0.1634
spectral centroid 0.0951 0.0452 0.0638 0.2193 0.0701
spectral flatness 0.004 0.0002 0.0009 0.0005 0.0014

spectral rolloff 0.0502 0.0497 0.0449 0.0428 0.0479
zero crossing 0.0272 0.029 0.0184 0.0204 0.027

Interquartile range 1.6936 1.4342 1.2955 2.0725 1.3455

to distinguish different volunteer speakers. For example, the
median amplitude values of User 3 and User 4 are close.
Similarly, the kurtosis values of User 1, 2 and 4 are close.
Although some features seems to be potential for user
differentiation, they happen to be similar with other volunteers
(not shown due to the page limit). This similarity makes it
hard to distinguish different users with these features. The
reason behind is that these values are essentially affected by
the lip shapes and the “speaking” characteristics are not well
presented with these CSI-amplitude-sensitive features.

Instead of using the above separate features, we use
the extracted waveforms for the lip motions as the feature
since both time and frequency information are included in
the shapes. Figure 6 also shows that although the shapes
are correlated, the waveforms are different. To reduce the
computational complexity, we use Discrete Wavelet Transform
(DWT) to compress the extracted waveforms. Compared with
Short Time Fourier Transform (STFT) [26], DWT is more
effective in reserving highly varying signals such as impulse
and peaks. For each word speaking, we perform DWT n
times. The parameter n poses a tradeoff between accuracy and
computational efficiency as a larger n will lead to decreased
accuracy but increased efficiency and a smaller n will lead to
increased accuracy but decreased efficiency. We set a threshold
for the accuracy such that the largest n value that achieves
accuracy higher than the threshold is chosen. Figure 8 shows
the result shape based on DWT.
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C. Training and classification

When the waveform shapes are obtained via DWT, we
now need to choose appropriate classifiers for biometric
identification. For BioID with lip motions, we build a training
model for classification with the DWT based shapes. The
key problem left is how to quantify the difference among
different waveform shapes, such that we can feed the distance
between different shapes into existing training models. We use
dynamic time wrapping to calculate the difference between
different waveform shapes, which is the Euclidean distance of
the optimal warping path between two waveforms calculated
under boundary conditions and local path constraints. The
above feature is then fed into a kNN model or a decision tree
for classifying different users. We will study the accuracy of
different models experimentally and discuss the reasons behind
in Section V.

V. EVALUATION OF BIOID BASED ON LIP MOTIONS

We implement BioID based on lip motions in real hardware.
Specifically, we use a stationary PC equipped with Intel 5300
NIC as the CSI collector. The 5300 NIC has three antennas.
The PC has an Intel i3 CPU and 16GB RAM. The operating
system is Ubuntu 14.04. We use a WiFi AP with two antennas
at 2.4GHz in 802.11n mode. The CSI is collected using the
CSI tool for 802.11n [5]. The PC with 5300 NIC keeps pinging
the AP and extracts CSI data from the feedback packets from

TABLE II
THE CONFUSION MATRIX FOR THE IDENTIFICATION WITH LIP-BASED

BIOID FOR THE FIVE USERS.

HHits  UUser 1  UUser 2  UUser 3  UUser 4  UUser 5  
UUser 1  26 0 1 2 1 
UUser 2  0 29 0 0 1 
UUser 3  1 0 28 1 0 
UUser 4  1 0 1 25 3 
UUser 5  1 0 1 2 26 

the AP. The PC is place three meters away from the AP, and
the volunteers sit in the line-of-sight between the AP and PC.
No other people are moving during the experiment. We use the
sentence "Hello, please open the door for me!" as the sentence
for identification. Each volunteer speaks the sentence for sixty
times and the CSI traces are collected, where the first half
data (thirty samples) is used as the training set and the other
half data is used as testing set. In order to reduce irrelevant
interference, the speakers are required to lie in the office chair
and keep still during the speaking.

Table II shows the confusion matrix for the five users’
identification. The number in each box means the number of
hits. For example, the 26 in the box User1-User1 means in the
30 tests, User 1 is identified as User 1 for 26 times. From the
table, we can see that 1) the average accuracy for all users is
around 90%. 2) the accuracy for different users is different.
The reason is that the patterns in time and frequency for their
lip motions are different. User 2 and User 3 who have clearer
speaking patterns (larger mouth amplitude and more unique
speaking rate) achieve more accurate identification. 3) User 4
and User 5 have mutual identification errors, i.e., User 4 is
identified as User 5 twice and User 5 is identified as User
three times. The reason is that these two users have more
similar speaking behaviors than other. However, we notice that
most identification tests for those two users are still successful
(86.7% and 83.3%).

We use different classification schemes and compare the
accuracy. Figure 9 shows the result of identification based on
kNN and decision tree for all volunteers. We can see that
kNN generally achieves higher accuracy than decision tree.
The reason is that the feature we used (the DWT shapes)
are naturally clustered for the same person, which is more
suitable for the kNN approach. We also observe that User 2
achieves the highest accuracy with kNN while User 3 achieves
the highest accuracy with decision tree.

Next, we change the length of the speaking (the number
of syllables) and study the accuracy for user identification.
To conduct this experiment, each volunteer speaks “Hello,
please open the door, OK?”. We slice the CSI data for the
sentence and use part of the data set as input to study the
impact of sentence length. For example, length two is used
for the experiment with “Hello”. Figure 10 shows the accuracy
changes for all users. It can be observed that 1) as the length
increases, the accuracy for all users increases. It can be easily
understood because longer speaking provides more feature
data such that the difference among users can be captured.
2) The speed of the accuracy increasing becomes slower
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Fig. 10. The accuracy with different sentence lengths.

as the length increases. The reason is that the number of
syllables increases linearly, however, its contribution to user
differentiation becomes smaller as the shape distance used in
kNN is already clear with several syllables.

Other possible wireless biometrics. From the above design
and the cases introduced in Section II, we can see that as
long as the behaviors of the biometric can uniquely impact
the wireless signals, it can be used for human identification.
Therefore, signatures, keystrokes and other biometrics with
movements can also be used as wireless biometrics. For
example, each person has a unique keystroke behavior, which
may have unique influence on wireless signals. Therefore,
even without the input words, the keystroke manner can
be used to identify individuals. The implementation of the
keystrokes/signature based identification can also follow the
framework presented in Figure 3. The key is to design appro-
priate data preprocessing and feature extraction schemes based
on the biological background of the keystrokes/signatures.

VI. CONCLUSION

The massive CSI data available on commercial-off-the-
shelf NICs has led to evolutions from the specialized human-
identification devices to wireless signal based recognition
software. Wireless biometric IDs are one of the CSI-based
evolutionary applications. In this paper, a general recognition
framework of CSI-based wireless biometric identification is
proposed. Based on the framework, a novel lip motion based
scheme and the performance evaluation are devised. By
carefully incorporating the CSI characteristics of lip motions
to the noise removal and feature extraction, the proposed
scheme can accurately identify different users. We conduct
experiments on Intel 5300 NIC and the results show that the
user identification achieves high accuracy ( 90%).
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